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ADAPTIVE METHODS, ROLLING CONTACT,
AND NONCLASSICAL FRICTION LAWS
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ABSTRACT

Results and methods on three different areas of contemporary research are
outlined. These include adaptive methods, the rolling contact problem for
finite deformation of a hyperelastic or viscoelastic cylinder, and non-
classical friction laws for modeling dynamic friction phenomena.
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1. INTRODUCTION

This paper addresses three subjects that impact on the computer simula-
tion of nonlinear tire behavior: adaptive methods, which represent schemes
for assessing numerical error and automatically adapting the mesh so as to
improve accuracy; the rolling contact problem, which is at the heart of tire
analysis; and new friction laws, which are essential in developing realistic
models of frictional contact. Space limitations preclude a detailed discus-
sion of these issues; but further details can be found in recent papers and
reports by the author and his colleagues [1-17].

2. ROLLING CONTACT

The general rolling contact problem as a basis for nonlinear tire anal-
ysis involves some of the most challenging and difficult problems in struc-
tural mechanics. Among the complicating features are the presence of
unilateral contact, friction, inertia effects, multi-parameter bifurcations,
the emergence of standing waves, viscoelastic and thermal effects, large
deformations, the necessity of modeling of complex materials such as fiber-
reinforced rubbers, and the presence of non-conservative pressurization
loadings. A first step toward resolving such issues is the formulation of
correct kinematics and variational principles for a special case: the steady-
state rolling of a hyperelastic or viscoelastic cylinder in contact with a
rigid foundation and in a state of plane strain.

The kinematical situation is shown in Fig. 1 where the geometry of the
reference configuration (a rigid spinning cylinder with no contact) is com—
pared to the geometry of a deformed cylinder in steady-state rolling contact
with a rough (frictional) roadbed (foundation).

Key features of the kinematic description are listed as follows:

1) Time appears only implicitly in the formulation; if (R, ®, Z,) are
material coordinates, the referential coordinates are

r=R, 8=+ wt, z =2

where w 1is the angular velocity of the rigid, reference cylinder.

2) 1If the motion is defined by the map
x; = x3 (r, 8, 2) i=1, 2,3

where x; = spatial Cartesian coordinates of particles in the current confi-
guration, then velocity and acceleration components are
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3) The unilateral contact constraint can be expressed in the form

X2 $Hon PC

where T, 1is the exterior contact surface and () is the distance from the
hub center to the foundation. This condition can also be written

(xz - H)+ =0

where (.), denotes the positive part of (.).

4) The time history of deformation can be expressed in terms of strains
of particles located on the same circular arc in the reference configuration.
For example, if E is the Green-Saint Venant strain tensor, its time history
over an internal 0 1€t satisfies:

{E (r,8,2z,1); 0 < 1<t} = {E (r,x2,t), 0K x < ut}
This property makes it possible to incorporate viscoelastic effects into the

rolling contact problem in a straightforward way.

For illustration purposes, we consider a class of rolling contact prob-
lems in which the following constitutive properties hold:

a) The material is either an isotropic hyperelastic material char-
acterized by a strain energy function

W = W(Il,12,13)

(or = W(I;,I5) if I3 = 1 - an incompressible material) in which I;,I,,14
are the principal invariants of the deformation tensor C = FT F, or the
material is a viscoelastic material characterized by a 1inear v1scoe1ast1c
perturbation of a hyperelastic material; e.g.,

W £
S = E + y f k(T,t) E(t)dt

with vy a viscosity parameter, k a material kernel, and § the second
Piola-Kirchhoff stress tensor.
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b) The normal stiffness of the contact interface obeys aconstitutive

law of the type

m
n
= - +
t cn(x2 H)+ on T

n C

where ty is the normal stress and Ch and m, are material constants.
If m, = 1 and c, = 1/e, where € 1is a positive constant, this relation
coincides with the normal contact stress associated with an exterior penalty

approximation of the unilateral constraint condition.

¢) If the cylinder is given a prescribed velocity Ve relative to
the roadway, the slip velocity on the contact surface is

Wp T Ve TXp TV, T waex

5) The friction law is (with t the frictional stress)

3y
IETI < ultnl = > Wp = 0
IETI = u!tnl =2 Wy = -XIIETI for some A 2 O

Variational principles for various rolling contact problems are summa-
rized in Figs. 2-8, beginning with the pure spinning of a cylinder without
contact and progressing to the general variational inequality for finite de-
formation rolling contact with friction. Various spaces of admissible func-
tions are defined in these figures as well as several nonlinear forms. 1In
particular,

A(x, n) = the internal virtual work produced by the Piola-Kirchhoff
- stresses T,
B(x, n) = the virtual work produced by inertia (radial acceleration)

effects per unit of angular velocity velocity w

C(x, n) = work term due to normal compliance of the interface
I(x, £, n) = a virtual work term representing the work done by the
~orr hydrostatic pressure p (present when the material is
incompressible)
jlx, n = the virtual work term due to frictional forces
f(n) = the virtual work due to external forces



A finite-element code has been developed based on this general varia-
tional principle which has the following features:

1. Biquadratic (QZ) elements are used to approximate the displacement
field and, for incompressible materials, Pl’ discontinuous linear elements arte
used to approximate hydrostatic pressures

2, The frictional functions are regularized in a standard way

3. A Riks—Crisfield method with Newton-Raphson corrections is used to
solve the nonlinear systems of equations characterizing the discrete problem

To date, an extensive set of numerical solutions has been ohtained using
these concepts and methods. Here only one example is cited, which is inter-
esting because of the slow emergence of standing waves as the angular velocity
is increased for a fixed peunetration H of a hollow rubber cylinder into a
rough roadway with coefficient of friction u = 0.03., Computed deformed
shapes and stress contours are shown in Figs. 9-13 for various values of w.
We notice the steady development of more-or—-less periodic wavelets on the ex-
terior surface which meet at points at which singularities appear to be
forming. The presence of friction on the contact surface destroys the symme-
try of this wavelet pattern. Mild viscoelastic effects, such as those in
rubbers at moderate temperatures, do not appreciably alter the structure of
these deformed geometries.

The generality of the formulation and of the methods employed here makes
it possible to study numerically a wide range of rolling contact problems.
Further work shall involve generalizations of these results to three-—
dimensional rolling contact problems which include the effects of turning,
steering forces, and tilting relative to the roadway plane.

3. ADAPTIVE METHODS

We shall now turn to the important subject of adaptive finite~element
methods. Adaptive methods should have a significant impact on not only tire
analysis but also on general computational structural mechanics in the rela-
tively near future.

In general, adaptive methods seek to change the structure of an approxi-
mate method to improve the quality of the solution. By structure, we mean the
mesh density, locations of nodes, and order of the local polynomials. By
quality of an approximation, we generally mean the error in approximation in
some appropriate norm. There are, thus, two primary aspects of any adaptive
finite—-element method:

1) The estimation of the error
2) The adaptive strategy
In the first of these, it is assumed that an initial approximation of the

solution is known, perhaps from a computation on a coarse mesh, and that this
rough solution can be used to obtain an a posteriori estimate of the local
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error over each finite element. Once an estimate of the local error is known,
one must call upon some technique to reduce the local error and thereby im-
prove the quality of the solution.

There are two general types of methods we have studied for a posteriori
error estimation of the local error over each finite element. Once an esti-
mate of the local error is known, one must call upon some technique to reduce
the local errvor and thereby improve the quality of the solution.

There are two general types of methods we have studied for a posteriori
error estimation:

l. Residual methods
2. Interpolation (or a priori) methods

As the name implies, residual methods make use of element residuals -~ the
residual or unbalance left over when the approximate solution is substituted
into the governing equations and edge conditions on each element.

The residual itself (e.g., the equilibrium unbalance in element forces)
is not necessarily a good indication of local error. Indeed, the local
residual can be nearly zero while the error can be quite large. For this
reason, it is generally necessary to calculate certain local error indicators
¢, which bound the error above and below in appropriate norms. The calcula-
tion of error indicators generally requires the solution of special local
problems over each element in which the element residuals enter as data. For
example, in the model elliptic problem,

A = f in Q CZIR2
u = on af

(with A the Laplacian and f given), the finite-element solution u
satisfies

fg Vuh . Vvh dxdy = fQ fvhdxdy

for arbitrary test function v, and over each element K of a mesh, the
residual is

ry = - Auh - f



Over element K, an error indicator ¢k is computed which satisfies
auh
f V¢k e Vv dxdy = f Ty vdxdy + ¢ U vds
K K oK

for v in HI(K). One can show that the error ey = u - u, in the energy norm

(HehHl’Q = {fQ|Veh|2 dxdy }1/2) satisfies the bound

2 2
Hegl17,0 6 1 Heel17 ¢

Various residual methods differ in the way these error indicators are
defined and calculated. There are some residual techniques which can produce
sharp local error estimates in virtually any norm for certain classes of prob-
lems. (See Demkowicz and Oden [4, 5]). These methods are not restricted to
linear problems and have been used to produce error estimates in highly non-
linear problems (see [7, 16]).

The interpolation methods make use of the fact that the interpolation

error over an element K of diameter hy over an element on which poly-
nomials of degree p are used is

2 2 | 42
lu = Mul] ¢ Som” luly ¢

where u 1is a given smooth function, nhu is its interpolant,

2 2
lull,K = fK |Vu| dxdy

2 2 2 2
|u|2’K = fK (uXX + uXy + uyy)dxdy

and C is a constant independenf of hy and u. The idea behind interpola-
tion methods is to estimate ]ulz g using results of a coarse-mesh approxima-
tion (e.g., using finite-differenée methods or extraction methods [6]). The
constant C cannot, in general, be determined, so such interpolation methods
can only be used to assess relative error in various finite elements.

Once an estimate of the error is obtained, the local error is reduced
adaptively using one of the following techniques:
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1. h-methods: the mesh size h is reduced and the number of elements
is increased in regions of high error.

2. p-methods: the mesh is fixed, but the local order p of the
polynomial shape functions is increased.

3. Moving mesh methods: the nodes in a finite—element mesh are moved
and concentrated in areas of high error.

4., Combined methods: these involve combinations of the above three
techniques.

We have developed test codes which employ all of these methods. The
results of some tests are given in Figs. 14-20, and specific comments follow.

1. In Fig. 14 we see a distorted mesh obtained using a moving mesh
strategy on the driven cavity problem for an incompressible viscous fluid (see

[71).

2. Figures 15, 16, and 17 contain computed results in adaptive schemes
based on residual methods devised by Demkowicz and Oden [4, 5]. The results
shown here are for transient heat conduction problems with dominate convection
effects and for nonlinear Burgers' equation vector—valued solutions which
simulate the Navier—-Stokes equations. A special h-method is used here which
employs a fine grid and a coarse-grid approximation to estimate error.

3. Results of a new p—method for Navier-Stokes equations in two-
dimensions are illustrated in Figs. 18, 19 (see [1l, 16]). Here a rather
coarse mesh is used and errors are reduced by increasing local polynomial
degrees from 1 to 2 to 3, Different shading in these figures indicates dif-
ferent levels of local L2 error, with black cells indicating an error of less
than 5 percent, grey an error of less than 10 percent, and white an error of
over 20 percent. Such large local errors are reduced before the solution is
allowed to advance in time. Remarkably, the so-called effectivity index 8
for this problem (which representg the ratio of the estimated local error to
the actual local error) for an L“ - norm varied from around 1.001 to 0.860
for the time ranges considered in a test example. This suggests that
residual-type error estimates based on p-type strategies can be very accurate,
even for transient nonlinear problems on coarse meshes.

Figure 20 shows refined mesh patterns for a class of linear elliptic
problems in which a very fast vectorizable h-method is used in conjunction
with an interpolation—type error estimator (see [6]). One interesting aspect
of this work, indicated by different shadings of elements in the figure, is
that the distinction between "optimal" meshes determined using a very sophis-
ticated error estimator (see [17]) and very crude estimates ([6]) is negligi-
ble whenever strong singularities are present.

4, NON-CLASSICAL FRICTION LAWS

In our most recent calculations of rolling contact, we have employed
special interface constitutive equations for the normal compliance of the
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interface and the tangential frictional forces. Some of these laws are men—
tioned in Section 2 of this paper (see also Fig. 6). The physical interpreta-
tion and the motivation of such models are discussed in references [14, 15, and

18].
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Figure 3
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Figure 4
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ROLLING CONTACT WITH FRICTION
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C1=80 psi  C2=20 psi  VIS=0 FRIC=.3 DISP=R, - H = .1 in.

w = 300 rpm

Figure 9

C1=80 psi C2=20 psi VIS=0 FRIC =.3 DISP=R, - H = .1 in.

/]

w = 300 rpm

Figure 10
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Figure 12

DISP=R, - H = .1 in.

w = 300 rpm

DISP=R, - H = .1 in.

w = 300 rpm
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C1=80 psi C2=20 psi VIS=0 FRIC=.3

Figure 13

DISP=R, - H = .1 in.

w = 395.6 rpm
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Driven cavity problem. Optimal mesh after 8 FE recalcula-

tions. a=4,8=4, vy

Figure 14
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Heat equation with a dominating convection -
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Burger's equations. First component of the
solution after 1 time step, t=0.02

Figure 17
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